finite space meaning in Chinese
有限空间
Examples
- Chaos is a ubiquitous nature phenomenon . the solution of chaos mathematical model is an extremely instable movement localized on finite space . as for instability , that is , the adjacent orbit will separate exponentially with the time goes by
混沌是自然界中存在的普遍现象,对混沌现象建模产生的混沌数学模型,其解为局限于有限相空间的高度不稳定的运动,所谓高度不稳定是指近邻的轨道随时间的发展会指数地分离。 - It is brought forward for the first time that in summertime the pco2 of the surface water near the changjiang estuary , whose salinity is less than 20 , decreases dramatically from upwards of 800uatm to downwards of 300uatm within the range of less than half one latitude , suggesting a transformation of a strong co2 source to a co2 sink in a finite space
首次调查得到,夏季长江口附近盐度20区域的水体极高的pco _ 2 (最高测得800 atm以上)在不到半个纬度的范围内递减到300 atm以下,即由一个很强的大气co _ 2源,有限的空间尺度范围内变成为汇区,有着极大的梯度变化。 - A widely used method for checking real - time systems is , according to the real - time property to be checked , to use a proper bi - simulation equivalence relation to convert the infinite - timed state space to a finite equivalence class space . the algorithm needs only to explore the finite space to get a correct answer . in most cases , exhaustive exploration is very difficult because the equivalence class space increases explosively when the scale of the system increases . in this paper , an equivalence relation is introduced to check whether a concurrent system , which is composed of a finite set of real - time automata , satisfies a linear duration property . to avoid exhaustive exploration , this paper also introduces a compatibility relation between timed states ( configurations ) . based on these two relations , an algorithm is proposed to check whether a real - time automaton network satisfies a linear duration property . the cases study shows that under some conditions this algorithm has better efficiency than the tools in the literature
一个被广泛用于验证实时系统的方法是根据被验证的实时性质,使用适当的双向模拟等价关系使无限的状态空间转化为有限的状态等价类空间.算法只需要在这个有限的等价类空间里搜索就可以得到正确答案.但是,这个等价类空间的规模一般随着系统规模的增大而产生爆炸性的增长,以至于在很多情况下,穷尽搜索这个空间是不现实的.该文引入了一个等价关系来验证一个由多个实时自动机通过共享变量组成的并发系统是否满足一个线性时段特性.同时,还引入了格局之间的兼容关系来避免对状态等价类空间的穷尽搜索.基于这两个关系,文章提出了一个算法来验证是否一个实时自动机网满足一个线性时段特性.实例研究显示,此算法在某些情况下比其他一些工具有更好的时间和空间效率